વિધાન $1$: $\sim (p \leftrightarrow \sim q)$એ $p\leftrightarrow q $ને તુલ્ય છે.
વિધાન $2$: $\sim (p \leftrightarrow \sim q)$ ટોટોલોજી છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
વિધાન $(p \rightarrow \sim p) \wedge (\sim p \rightarrow p)$ શું થાય છે ?
જો $q$ એ મિથ્યા અને $p\, \wedge \,q\, \leftrightarrow \,r$ એ સાચું હોય તો નીચેનામાંથી ક્યું વિધાન નિત્ય સત્ય થાય ?
"જો બે સંખ્યાઓ સરખી ન હોય તો તેમના વર્ગો પણ સરખા ન થાય ' આ વિધાનનું સામાનાર્થી પ્રેરણ .......... થાય
જો બુલિયન બહુપદી $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ એ સંપૂર્ણ સત્ય હોય તો $p *(\sim q )$ એ . . . . ને તુલ્ય છે.
$\sim (p \vee q) \vee (\sim p \wedge q)$ એ કોના બરાબર છે ?